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ABSTRACT 

In this paper a new approximation operator  is introduced and its properties are 
studied. Special cases of this operator  are the well-known Sz~sz power-series 
approximation operator  and its generalization by D. Leviatan. The  behaviour of 
the new approximation operator  at points of continuity and discontinuity is 
investigated by using probabilistic tools as the Chebishev inequality and 
Liapounov 's  central limit theorem. Such probabilistic methods  of proof simplify 
the proofs and give better understanding of the approximation mechanism. 

O. Introduction 

In paper we introduce a new approximation operator of the Arato-Renyi type. 

This new operator generalizes the well known Szhsz power series and an 

operator of D. Leviatan (introduced in [4]). The motivation to define and 

investigate such an operator came from the interesting paper of M. Arato and A. 

Renyi [1]. 

Using probabilistic tools such as the Chebishev inequality, a variant of 

Liapounov's central limit theorem and a simple form of Kolmogorov's three 

series theorem we analyse the behavior of our operator at continuity points of 

the approximated function as well as at discontinuity points. 

The next section gives the theorems while their proofs are given in Section 2. 

1. Main results 

Le t  X; (j => 1) be non-negative independent-random variables with finite means 

rnj and finite variances b; satisfying 

(1.1) ~ b, < o0. 
j=! 
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As is well-known (see [6, theor.  2, p. 423]) for  each k = 1 , 2 , . . .  the  series 

ET=k(Xj - mr) converges almost surely to an almost surely finite r andom variable,  

to be deno ted  by &, having finite variance ET=kb ~. 

Thus  we may define for - oo =< x -< + 

(1.2) 
{ P~176 k-, 

P~(x) =- Pk ({Xj},)-= P r ( & + , -  mk =< x + ~ m r < SE) 
j = l  

(k ~ 1). 

The  first approximat ion  opera to r  defined for every  funct ion f on [0,~]  is 

(1.3) P.( f ,x)=-Pu({Xj} , f ,x)=-  ~ f (u - lok )Pk ( - - l ogxu )  (U > 0 )  
k=O 

where  

(1.4) po ~ po({Xj }) = 1, pk ~ pk ({Xj }) -= exp mj (k => 1). 

The  proper t ies  of this ope ra to r  for  points of cont inui ty are established in 

T h e o r e m  1 while T h e o r e m  2 establishes its proper t ies  at points of discontinuity.  

THEOREM 1. Let Xj (j >= 1) be non-negative independent random variables 
with corresponding finite means mj and finite variances br. Suppose (1.1) is 
satisfied, 

(1.5) ~ mr = + oo 
j=l 

and 

(1.6) 

Then : 

(i) I f  f ( x )  
0_--<x< +oo = 

is continuous for 

lim mj = 0. 

0<X= =< +oo then we have uniformly in 

(1.7) 6 . . . .  f (  + ~)  + lim P, (f, x )  = f ( x ) ,  

where 6~v = 0 for u ~ v and 6.. = 1. 
(ii) If  f (x  ) is bounded for 0 <= x < + oo and continuous at x = Xo, 0 _-< Xo < + % 

then 

(1.8) lim P. (/, Xo) = [(Xo). 
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Suppose Xj (j = 1) is a sequence of non-negative independent random 

variables with corresponding finite means mj and finite variances bj satisfying 
(1.1), (1.5) and (1.6). Let {nj}j=-~ be a sequence of integers such that 1 = n~ < n2 < 

�9 -. < nj ~ + oo and limi_| -~ m, = 0. Then the sequence Yj (j => 1), Yj = 

ETL_+,~7~ Xj is a sequence of non-negative independent random variables satisfying 

(1.1), (1.5) and (1.6). Also 
n/+l--1 

Po({Y. ,}) ,x)=Po({X, .} ,x) ,  Pj({Y,,,},x)= ~. P~({Xj},x) (j_->l) 
r : n  i 

po({Y,,}) = 1 pj({ Y,.}) = p,,+,_,({X,,}) (j => 1). 

Thus for each suitable sequence {nj}j=~ we obtain a new approximation operator 

P, ({ Y,, }, f, x) to which Theorem 1 applies and whose coefficients are related in a 

simple way to those of P,({X, ,} , f ,x ) .  

THEOREM 2. Let Xj O" >-_ 1) be non-negative independent random variables 

with means mj and nonzero variances bj satisfying (1.1), (1.5) and (1.6). Moreover, 

if for some xo, 0 < xo < +~ ,  one has 

for some $ > O, 

o ~ b,) ''2 (1.10) m . ( . ) + ~  = (j =rttu)+l 

where n ( u ) =- n (U, Xo) = max{j: u -' pj <= xo}. Then 

= (j~.~,§ ( u ~ )  

(U ---'> ~ )  

(1.11) �89 + l-(xo)) -~ lira P, (f, Xo) ~ lim P. (f, Xo) < ~(L +(Xo) + L-(x0)) 

where L § L-(xo), l+(xo), l-(xo) are, respectively, the right and left upper limits 

and the right and left lower limits o f f ( x )  at Xo. In particular if f(xo) and f ( x o -  ) 
exist we have 

(1.12) lim P, ~, Xo) = �89 + ) + f(xo - )). 
t s ~  

In the following theorem we obtain for non-negative independent random 

variables Xj which are exponentially distributed with means mj = a ; '  an explicit 

form for the functions Pk (") used in defining the approximation operator P, (f,x). 

For a random variable X denote by F• ), ~x(" ) and f•  ) the corresponding 

distribution function, characteristic function and the probability density function 

(if it exists). 
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THEOREM 3. Suppose aj > 0 (1' _--> 1), 

(1.13) ~ a ; l =  +oo and ~ a [ 2 <  +oo. 
i=1 i = t  

Let X i (1" >= 1) be independent exponential random variables with means a; 1. 
Denote for k = 1, 2, . . . ,  f~ ( .)  =-- [s~ (") and F~ (.)  - Fsk ('). Then 

(i) Fork = 1 , 2 , . . . , f ~ ( . ) ~ C ~ ( - o o ,  +oo) and 

f, (1.14) F, ( t )  -- f1(s)ds. 

(ii) F o r k = l , 2 , . . .  and - ~ < x <  +~ 

(1.15) [~+l(x)=(l+ D ) [ ~ ( x - a ~ l ) = [ j = ~ ( 1 - D ) ] [ , ( x - ~ l a 7 1  ) 

where D denotes differentiation with respect to x. 

(iii) F o r k = l , 2 , . . .  and - o o < x  < +oo 

(1.16) 

Pr(Sk+,_ 1 < x < S k ) =  1 rk-lz 1 1 [D~='(I_D)]FI(x).  a---k= -d-kk [j~ l + D) ]fl(X ) = a---k 

(iv) For 

(1.17) E(s)=--jQ ( 1 -  s-L]e ''~ 
a j  / 

(1.19) 

(v) 

(1.20) 

which converges for all complex s we have 

1 f| e - ~tx (1.18) f,(t)  = ~--ff~ j_~ E(ix ) dx 

and for all complex s satisfying Re s < minj~l aj one has 

1 f§174 
E ( s ) =  _~ e-"f , ( t )d t .  

In this case denote the operator Pu(f, x) by Su(f,x); then 

S~(f ,x)=f(u- ' )Fl(- logxu)+ ~=l~'f(u-'/~k)a~tj~(l+ f l ( -  logxu + log ~:k-,) 
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where 

(1.21) ~k = exp a~ -1 . 

AN EXAMPLE. If we take in the last theorem a. = n (n - 1) (which clearly 

satisfy our conditions on the a . )  we get the following variant of the Sz~sz 

approximation operator  

(1.22) S,(f, x)  = f exp = ~--~.i e x p ( -  x u e - ' ) ( x u e - ' )  k 

where y is Euler 's constant i.e., 

�9 1 
3' = - log n . 

Indeed using the inversion formula for Laplace transforms along with the 

residue theorem and standard estimates for integrals along circular curves we 

find 

(1.23) F~( -  log x) = e x p ( -  xe-~). 

This equation together with (1.16) yields (1.22). 

The next two theorems state some approximation properties of the operator  

s~(i,x). 
By applying Theorem 3 to Theorem 1 we obtain 

THEOREM 4. Suppose that aj > 0 (j => 1) satisfy (1.13)�9 

Then : 

(i) I f  f ( x )  is continuous for O<- x <<-~ we have 

(1.24) 

(ii) 

6,| + r + lim S, if, x)  = f ( x  ) uniformly for 0 <= x <= ~. 

I f  f ( x )  is bounded for 0 <-x <<_oo and continuous at x = Xo then 

(1 �9 lim Su (f, x0) = f(xo). 

Result (ii) was first proved by D. Leviatan [4]�9 

THEOaEM 5. Suppose a, (n >- 1) satisfy the assumptions of Theorem 3. I f  in 

addition to the previous assumption one has for some Xo, 0 < Xo < + 
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where k (u ) =- k (u, xo) =- max{/':  u-l~:j _-< Xo}, then for each bounded function f (x  ) 
in [0, oo] we have 

(1.27) �89 l-(xo))<=limS,(f,x)<=lim S,(f,x)<=~(L+(xo)+ L-(xo)). 

In particular if Xo is a point of discontinuity of the first type for f ( x )  one gets 

(1.28) lim S,(f ,  x)  = 1/2 {f(xo + ) + f(xo - )}. 

An  ana logous  result  for  the genera l ized  Bernste in  polynomials  was ob ta ined  

by A. Jak imovsk i  [3]. 

2. Proofs 

In proving  T h e o r e m  1 we rely on the fol lowing l emma.  

LEMMA 1. Let Xj (j >-1) be non-negative independent random variables 
which satisfy (1.1), (1.5) and (1.6). Then 

(2.1) ~"~ P k ( - o o ) = 0  and ~ P k ( x ) = l  f o r - o o < x = <  +oo. 
k = 0  k = 0  

T h e  authors  wish to thank  Professor  D. Lev ia tan  for  point ing out  that  L e m m a  

1 requires  a proof .  

PROOF. We  have P o ( + ~ )  = 1 and P k ( + ~ ) = 0  for  k _-> 1. So (2.1) is t rue for  

x = + ~ .  Also P k ( - o o ) = 0  for  k _->0 so (2.1) is t rue also for  x = - ~ .  For  

- ~ < x < + oo we have,  since X, (j _-> 1) is non-negat ive ,  

(2.2) P ~ ( x ) = P r  1 ~ -  S . . l > x +  mj = l - P r  S . + l > x +  m, , 
k = 0  . i=1 

and by the Cheb ishev  inequal i ty  we get 

Pr S , + l > x +  mi ---- x +  mj b~--~0, n--->~. 
j = l  j = n + l  

T h e r e f o r e  for  - ~ < x < + oo 

Pk(x)= lim ~ Pk(x)= 1. 
k = 0  n ~  k = 0  

Q . E . D .  
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PROOF OF THEOREM 1. 

similar way. Given a 

[f(y)-f(x)l<e for  [ y - x [ < &  O_--<x, y <  + ~  and 

y > 8  -1. 

By L e m m a  1 we have 

f ~ 
(2.3) 8 . . . .  f ( + o o ) + P . ( f , x ) - f ( x ) =  I , (u )+I2(u)+I3(u)  

where  f o r O < x <  + ~  

We prove part  (i) of the theorem.  Part  (ii) is p roved  in 

e > 0  there exists some 8 = 8 ( e ) > 0  such that  

[ f ( y ) - f ( + o o ) [  < e for 

for x = + oo 

for 0 < x <  +oo 

for  x = 0 

Il(u) =-- 
k 

{ k : l u - l o k  x [<S}  

[f(u -lpk ) - f (x  )] Pk ( - log xu ), 

k 
{ k : u  Ipk x ~ }  

[f(u -lpk ) - f (x  )] Pk ( -- log xu ), 

I,(u) 5', 
k 

{k : u - l p k - - X ~ - - 8 }  

[f(u-'pk )-- f (x  )]Pk ( - - Iogxu) .  

Obviously 

(2.4) [Ii(u)l<=e for  0 < x <  +oo. 

We est imate I2(u) for  0 < x =< 8-1 and for + oo > x > 8-1 separately.  The  funct ion 

kdx,  u) defined by 

kl =- k~(x, u) =- min{k : u-l pk - x >= 8} 

is an increasing funct ion in x and in u separately for  0 = x and u > 0. Now for 

8 - 1 < x <  +oo we have 

(2.5) 112(u)[~ ~ [ f ( u - l p k ) - - f ( x ) l P k ( - l o g x u )  
k = k !  

[I f (u  -lpk ) - -  f (  + OO)[ + If(x)  -- f (  + 00)IlPk (- log xu) 
k = k l  

<=2e ~ P k ( - l o g x u )  
k = O  

(and by (2.1)) 

_-<2e for 8 - 1 < x  < +oo. 
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W e  have  [ f ( x ) l - - < M  < + ~  for  0=<x _-< + ~ .  N o w  for  0 < x  _-<8 -1 we get 

(2.6) [I2(u)l<=2M �9 ~ Pk(-logxu) 
k=kt 

= 2 M .  lim f~ Pr(Sk+l -- mk =< - l ogxu  + logpk-i  < Sk) 
p ~ + ~ k ~ k l  

(and by (2.2)) 

= 2M-{Pr (Sk l  > -- l ogxu  + logp~_l) 

- lira Pr(Sp. l  > - l ogxu  + iogp~)} 

_--- 2 M .  Pr(SE, > - logxu  + Iogpk,-l) 

(and since u-lpk - x >= 6 implies logpk,-i - logxu  -- log(1 + 6x -1)- ink,) 

<=2MPr(Sk,>log(l+6x-l)-mk,), for  0 < x  < 8  -1. 

By (1.6) we can find K(e) such that  

1 
(2.7) mk < ~ l o g ( 1  + 6 2) for  k > K ( e ) .  

Since kl(x,u) is increasing for  0=<x < +oo and u > 0  and kl(O,u)---~+oo as 

u---> +oo we get that  u > Uo(e) implies kl(0, u ) >  K(e) and in par t icular ,  for  

0 -< x _-< 6 -1 and u > Uo(e), kl(x, u) >= kl(O, u) > K(e). T h e r e f o r e  by (2.7) 

(2.8) 

1 ~2) _--__ l l o g  (1 + mk~tx,u) < ~ log (1 + 6x-I) 

Hence ,  for  0 < x =< 6 -1 and u > uo(e) 

(2.9) Pr(S,, ,~,. ,>log(l+Sx-')-m,,, . , . ,)  

for  0 <  x =< 3 -1 and u > u0(e).  

(and by the Cheb i shev  inequal i ty)  

< (~ log(1  

(and by (2.8)) 

-2  

+ 8 x - ' )  oj 
j=kl(x,u) 

-2 
_ _ < ( ~ l o g ( l + 8  2) bj 

j=kl(x,u) 
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(and by (1.1) we have for u > ul(e)>= Uo(e)) 

< e  for u > ut(e), uniformly in 0 < ' x - < 8 ( e )  -t. 

By (2.5), (2.6) and (2.9) we get 

(2.10) I I z ( u ) l ~ ( 2 M + 2 ) e  for u > u l ( e )  uniformly in 0 < x <  +oo. 

The argument leading to (2.10) yields also 

(2.11) ]I3(u)l<=(2M+2)e for u > u2(e) uniformly in 0 < x  < + ~ .  

Combining (2.3), (2.4), (2.10) and (2.11) we get 

{ ( 4 M + 5 ) e  i f o r u > u 3 ( e ) a n d O < x < = + ~ 1 7 6  (1) 
= f - f ( 0 )  for u > 0 a n d x = 0  

0 as u ~ + ~ ,  uniformly in 0 = < x -  + ~ .  

Q.E.D. 

In order to prove Theorem 2 we need the following two lemmas. 

LEMMA 2. (A variant of Liapounov's theorem.) Let Xj (j = 1) be indepen- 
dent random variables with finite means mj and finite variances b~. Suppose (1.1) 

(2.12) k . i E I X k - - m k l  2§ = 0 ~ +, bk , a s m ~ o o .  

Then 

\ 1/2 

(2.13, P r { S , § 2 4 7  } <= y}--->*(y) 

uniformly in y, - o o <  y < +oo, where ~ ( y )  is the normal distribution function. 

PROOF. The random variable Sk = Y.7-k(Xj- mr) is an almost surely finite 

random variable. The proof of (2.13) is similar to that of theorem B (ii) on page 

275 of [5] and the uniform convergence follows by theorem 4.3.3 on page 183 of 
[7]. 

LEMMA 3. Let Xj (j >= 1) be non-negative independent random variables with 
finite means m s and nonzero finite variances bj. Suppose that for some Xo, 
0 < Xo < + oo, and some ~ > 0 (1.9) and (1.10) are satisfied. Then 

(2.14) lim ~ PE(--Iogxu)  = 1 
u ~ + ~  k ~ n ( u ) + l  2 " 
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PROOF. By the very definition of n (u) we have u-'p.<.) < Xo < u-lp.t.)+~. This 

implies 0 _-> - log XoU + s mj > - m.(.)+l and by (1.10) we get 

(2.15) n•) 
1/2) 

(-logxou +/ffi, m 0 /((/-n(~)+, bi) ~ 0  as u ~  +~. 

By (2.2) 

Pk(-logxou)= 1 - P r  &(.)+l> - logxou  + 2., mj 
k =o i - i  

= l -Pr{&, . ,+ , /  ((k=.,~)+ b,)l/2), ( - logxou+ ,. m , ) /  k_.,.)+, ~ b')1/2)}" 

Applying Lemma 2 and (2.15) we get 

> e~ ( -  log XoU) -,  ~(o) = -~, 
k = O  

as u---~ +co. 

Q.E.D. 

PROOF OF THEOREM 2. Given e > 0 we have f(x)<= L§ ~ for Xo < x < 

Xo+ 8(e) and f(x)_~L-(xo)+ e for Xo- 8 ( e ) < x  < Xo. So 

~'. (f, Xo) 

Llu-~m,-xol~8(~) -ds(e)< u-lp~-xo<O o<u-~p~-xo<8(~) 

} /(u-%)P~(-log XoU) 
u -  Pk - x o ~  

- I i ( u ) +  I2(u) + I3(u) + I+(u). 

By applying Theorem 1 to the function g(x) (instead of f(x) there) defined by 

g ( x ) = 0  for [X-Xo]< 8(e) and g ( x ) = f ( x )  for Ix-xol-->8(e)  we get 

lim ~,(u) = 0. 

Since / (x)  is bounded and lim.~| 0 for k = 0, 1 ,2 , . . .  we get 

lim h ( u ) =  0. 
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Now 

I~(u) _-< (L +(Xo) + E) ~_~ Pk ( - log xou ) 
k 

u - l p k  > x  0 

=(L+(xo)+e)  ~ Pk ( - logxou)  
k = n ( u ) + l  

(and by Lemma 3) 

Thus 

1 
---) ~ (L +(Xo)+ e). 

!ira I3(u) <= -~ L+(xo) + -~ . 

Similarly we get 

.~| Iz(u) <- ~ L-(xo) + ~ . 

Hence 

1 
lira P. (f, Xo) =< ~ (L § + L-(xo)). 

Similarly we get 

1 (Z+(Xo) + Z-(xo)). lim P.(f,  xo) >- 

Q.E.D. 

PROOFOF THEOREM 3. Xj are independent exponentially distributed random 

variables, with means a i  I and therefore with variances 1/a~, i.e., their densities 

are 

O "/ for t > 0 aj 

fx, (t) = 
for t_-<0. 

So the random variable X , -  (1/aj) has the probability density function 

h j ( x ) - f x r _ a r l ( x ) = { a j e - ~  -'~jx 

1 
for x ~ - - -  

aj 

1 
for x -< - - -  

aj 
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As Z 1/a ] < o% & = ZT=k(X j - (1/at)) is an almost surely finite random variable 

for k =>1. For each k = 1 , 2 , . . .  we have Sk =(Xk--(1/ak))+Sk§ where 

Xk - (1/ak) and S~+1 are two independent  random variables and Xk - (I/ak) is an 

absolutely continuous random variable. Therefore  by a well-known result & is 

absolutely continuous with a probabili ty density function .h, satisfying 

(2.16) h ( x )  = (h~ *GO(x) 

f;;.-, =_ ake-,e-a~x-,)h+,(t)dt" 

Differentiating (2.16) on both sides, we get 

(2.17) (d/dx) fk(x)  = ak(fk+~(X +(1/ak))--fk(x)) for k = 1 , 2 , . . .  

and - o o < x <  +0% 

which implies that f~ has derivatives of all orders. Also we get by (2.17) that 

(2.18) f k+l (X)=( l+D/ak) fk (X- -1 /ak)  for -oo<X+OO 

and k = l , 2 , . . . .  

By induction we obtain 

(2.19, f k + , ( x ) = { , = I - I i ( l + D ) } f , ( x - ~ l  ) for - ~ x ~  + ~  

and k = 0 , 1 , 2 , - . . .  

By (2.17) we have for k -- 1 , 2 , . . .  and - o o < x  < + ~  

(2.20) fk (x ) = -~ -d7 fk (Odt 

o [Pr(S  l x+�88 Pr,Sk 

( ) = ak Pr S k + l - - -  = x < Sk �9 
ak 
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By (2.20) and (2.19) we have for k = 1,2, . . .  

( - - -1  < x < S k ) =  1 =  - - [k (x )  (2.21) Pr Sk+l ak a~ 

1 / ] ]  (1 + D ) }  f l (x )  
ak  t j=l  

Since $1 is an almost surely finite random variable, we have 

~ps,(t) = I~I ~px,-a71(t) 
1=1 

= 1//__N1 (1 - ~ )  e " "  

1 
E( i t )  " 

Since a probability density function is uniquely determined by its characteristic 
function we get by theorem 6.1, page 55 of [2] 

1 f§ 
E-(s) = _~ e l ' G ( t ) d t  

where G ( t ) =  f~(t), and the integral converges for Re s < minjax aj. Also by 
corollary 5.4, page 53 of [2] 

1 f +| e-~'x 
f l ( t )  =-- G( t )  = ~ J-| E(ix------) dx. 

PROOF OF THEOREM 5. 

and 

In this case we clearly have 

EX/= rn, = a; -1, 

Var X/= bj = a i 2, 

E I X ,  - m, 13 = 2 , , ;  3, 

pk -- ~:k, 

n (u )=  k(u) .  

Q.E.D. 
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We see that (1.26) is equivalent to (1.9) with 8 = 1. Moreover, (1.26) implies 
(1.10). Indeed we have 

0 < -1 < a ; ~  O k(u)+l 
j=k(u)+l 

= ( u  ~ ~) 
./=k(u)+l 

SO 

--1 = / ~ - 2  
a k(u)+l O 

j=k(u)+ l  

which is exactly (1.10) in our special case of exponentially distributed random 
variables. It is quite obvious by Theorem 3 that all the other conditions of 
Theorem 2 are met so the conclusion of Theorem 5 follows. 
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